翻訳と辞書
Words near each other
・ Tensor product
・ Tensor product bundle
・ Tensor product model transformation
・ Tensor product network
・ Tensor product of algebras
・ Tensor product of fields
・ Tensor product of graphs
・ Tensor product of Hilbert spaces
・ Tensor product of modules
・ Tensor product of quadratic forms
・ Tensor rank decomposition
・ Tensor software
・ Tensor Trucks
・ Tensor tympani muscle
・ Tensor veli palatini muscle
Tensor-hom adjunction
・ TensorFlow
・ Tensors in curvilinear coordinates
・ Tensor–vector–scalar gravity
・ Tensou Sentai Goseiger
・ Tensou Sentai Goseiger Returns
・ Tenspeed and Brown Shoe
・ Tensta
・ Tensta Church
・ Tensta Konsthall
・ Tensta metro station
・ Tensta runestone
・ Tenstar Community
・ Tenstrike, Minnesota
・ Tensui, Kumamoto


Dictionary Lists
翻訳と辞書 辞書検索 [ 開発暫定版 ]
スポンサード リンク

Tensor-hom adjunction : ウィキペディア英語版
Tensor-hom adjunction
In mathematics, the tensor-hom adjunction is that the tensor product and Hom functors - \otimes X and \operatorname(X,-) form an adjoint pair:
:\operatorname(Y \otimes X, Z) \cong \operatorname(Y,\operatorname(X,Z)).
This is made more precise below. The order "tensor-hom adjunction" is because tensor is the left adjoint, while hom is the right adjoint.
==General Statement==
Say ''R'' and ''S'' are (possibly noncommutative) rings, and consider the right module categories (an analogous statement holds for left modules):
: \mathcal = \mathrm_R \quad \text \quad \mathcal = \mathrm_S.
Fix an (''R'',''S'') bimodule ''X'' and define functors ''F'': ''C'' → ''D'' and ''G'': ''D'' → ''C'' as follows:
:F(Y) = Y \otimes_R X \quad \text Y \in \mathcal
:G(Z) = \operatorname_S (X, Z) \quad \text Z \in \mathcal
Then ''F'' is left adjoint to ''G''. This means there is a natural isomorphism
:\operatorname_S (Y \otimes_R X, Z) \cong \operatorname_R (Y , \operatorname_S (X, Z)).
This is actually an isomorphism of abelian groups. More precisely, if ''Y'' is an (''A'', ''R'') bimodule and ''Z'' is a (''B'', ''S'') bimodule, then this is an isomorphism of (''B'', ''A'') bimodules. This is one of the motivating examples of the structure in a closed bicategory.〔


抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)
ウィキペディアで「Tensor-hom adjunction」の詳細全文を読む



スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース

Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.